Picture of mobile phone running fintech app

Fintech: Open Access research exploring new frontiers in financial technology

Strathprints makes available Open Access scholarly outputs by the Department of Accounting & Finance at Strathclyde. Particular research specialisms include financial risk management and investment strategies.

The Department also hosts the Centre for Financial Regulation and Innovation (CeFRI), demonstrating research expertise in fintech and capital markets. It also aims to provide a strategic link between academia, policy-makers, regulators and other financial industry participants.

Explore all Strathclyde Open Access research...

ESR, raman and conductivity studies on fractionated poly(2-methoxyaniline-5-sulfonic acid)

Dennany, Lynn and Innis, Peter C. and Masdarolomoor, Fatemeh and Wallace, Gordon G., ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility, Innovation Campus, University of Wollongong, Australia (2010) ESR, raman and conductivity studies on fractionated poly(2-methoxyaniline-5-sulfonic acid). Journal of Physical Chemistry B, 114 (7). pp. 2337-2341. ISSN 1520-6106

PDF (ESR,_Raman_and_conductivity_studies_on_fractionated_poly_2-methoxyaniline-5-sulfonic_acid_.pdf)
Accepted Author Manuscript

Download (17kB) | Preview


Synthesis methods used to produce poly(2-methoxyaniline-5-sulfonic acid) (PMAS), a water soluble, self-doped conducting polymer, have been shown to form two distinctly different polymer fractions with molecular weights of approximately 2 kDa and 8 -10 kDa. The low molecular weight (LMWT) PMAS fraction is redox inactive and non-conducting while the high molecular weight (HMWT) PMAS is electro-active with electrical conductivities of 0.94 0.05 S cm-1. Previous investigations have illustrated the different photochemical and electrochemical properties of these fractions, but have not correlated these properties with the structural and electronic interactions that drive them. Incomplete purification of the PMAS mixture, typically via bag dialysis, has been shown to result in a mixture of approximately 50:50 HMWT:LMWT PMAS with electrical conductivity significantly lower at approximately 0.10 to 0.26 S cm-1. The difference between the electrical conductivities of these fractions has been investigated by the controlled addition of the non-conducting LMWT PMAS fraction into the HMWT PMAS composite film with the subsequent electronic properties investigated by solid-state ESR and Raman spectroscopies. These studies illustrate strong electronic intereactions of the insulating LMWT PMAS with the emeraldine salt HMWT PMAS to substantially alter the population of the electronic charge carriers in the conducting polymer. ESR studies on these mixtures, when compared to HMWT PMAS, exhibited a lower level of electron spin in the presence of LMWT PMAS indicative of the the formation of low spin bipolarons without a change the oxidation state of the conducting HMWT fraction.