Picture of server farm and IT infrastructure

Where technology & law meet: Open Access research on data security & its regulation ...

Strathprints makes available Open Access scholarly outputs exploring both the technical aspects of computer security, but also the regulation of existing or emerging technologies. A research specialism of the Department of Computer & Information Sciences (CIS) is computer security. Researchers explore issues surrounding web intrusion detection techniques, malware characteristics, textual steganography and trusted systems. Digital forensics and cyber crime are also a focus.

Meanwhile, the School of Law and its Centre for Internet Law & Policy undertake studies on Internet governance. An important component of this work is consideration of privacy and data protection questions and the increasing focus on cybercrime and 'cyberterrorism'.

Explore the Open Access research by CIS on computer security or the School of Law's work on law, technology and regulation. Or explore all of Strathclyde's Open Access research...

Photolithographic patterning of conducting polyaniline films via flash welding

Henderson, Rowan D. and Breadmore, Michael C. and Dennany, Lynn and Guijt, Rosanne M. and Haddad, Paul R. and Hilder, Emily F. and Innis, Peter C. and Lewis, Trevor W. and Wallace, Gordon G., Australian Centre for Research On Separation Science ACROSS, School of Chemistry, University of Tasmania, Hobart Australia, School of Chemistry, University of Tasmania, Launceston, Australia, ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, University of Wollongong, Australia (2010) Photolithographic patterning of conducting polyaniline films via flash welding. Synthetic Metals, 160 (13-14). pp. 1405-1409. ISSN 0379-6779

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

In this work, two significant advances in photolithographic patterning of polyaniline (PANI) films are reported. Firstly, flash welding was enhanced through the use of polymeric substrates, enabling complete penetration of the welding of PANI films with thicknesses ranging from 5 to over 14 mu m, significantly thicker than reported previously. Masking of parts of the PANI films during flash welding enabled the formation of adjacent conducting and insulating regions as the welding changes the electrical properties of the film. Raman spectroscopy was used to determine the sharpness of these edges, and indicated that the interface between the flash welded and masked regions of the PANI films was typically less than 15 mu m wide. Secondly, using longpass filters, light with a wavelength less than 570 nm was found not to contribute to the welding process. This was confirmed by the use of a 635 nm laser diode for welding the PANI films. This novel approach enabled patterning of PANI films using a direct writing technique with a narrow wavelength light source.