Picture water droplets

Developing mathematical theories of the physical world: Open Access research on fluid dynamics from Strathclyde

Strathprints makes available Open Access scholarly outputs by Strathclyde's Department of Mathematics & Statistics, where continuum mechanics and industrial mathematics is a specialism. Such research seeks to understand fluid dynamics, among many other related areas such as liquid crystals and droplet evaporation.

The Department of Mathematics & Statistics also demonstrates expertise in population modelling & epidemiology, stochastic analysis, applied analysis and scientific computing. Access world leading mathematical and statistical Open Access research!

Explore all Strathclyde Open Access research...

Recent advance in tunable diode-laser spectroscopy with background RAM nulling for industrial applications

Ruxton, Keith C. and Chakraborty, Arup Lal and McGettrick, A.J. and Duffin, K. and Johnstone, W. and Stewart, G. (2009) Recent advance in tunable diode-laser spectroscopy with background RAM nulling for industrial applications. Proceedings of SPIE: The International Society for Optical Engineering, 7503 (750313).

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

A limiting factor of tuneable diode laser spectroscopy (TDLS) with wavelength modulation spectroscopy (WMS) is the presence of background residual amplitude modulation (RAM) on the recovered 1st harmonic signal. The presence of this background term is due to direct modulation of the source laser power. This work presents a novel method to optically remove the unwanted background, with the major benefit being that measurement sensitivity can be increased. The recently developed phasor decomposition method1 (PDM), is a near IR (NIR) TDLS analysis technique that is used with the addition of the new RAM nulling method to recover gas absorption line-shapes. The PDM is a calibration free approach, which recovers the gas absorption line-shape and the isolated 1st derivative of the line-shape from the 1st harmonic signal. The work presented illustrates and validates the new RAM nulling procedure with measurements examining the 1650.96nm absorption line of methane (CH4) with comparisons to theory.