Picture of boy being examining by doctor at a tuberculosis sanatorium

Understanding our future through Open Access research about our past...

Strathprints makes available scholarly Open Access content by researchers in the Centre for the Social History of Health & Healthcare (CSHHH), based within the School of Humanities, and considered Scotland's leading centre for the history of health and medicine.

Research at CSHHH explores the modern world since 1800 in locations as diverse as the UK, Asia, Africa, North America, and Europe. Areas of specialism include contraception and sexuality; family health and medical services; occupational health and medicine; disability; the history of psychiatry; conflict and warfare; and, drugs, pharmaceuticals and intoxicants.

Explore the Open Access research of the Centre for the Social History of Health and Healthcare. Or explore all of Strathclyde's Open Access research...

Image: Heart of England NHS Foundation Trust. Wellcome Collection - CC-BY.

Mechanisms of impulse breakdown in liquid: the role of Joule heating and formation of gas cavities

Atrazhev, V.M. and Vorob'ev, V.S. and Timoshkin, I.V. and Given, M.J. and MacGregor, S.J. (2010) Mechanisms of impulse breakdown in liquid: the role of Joule heating and formation of gas cavities. IEEE Transactions on Plasma Science, 38 (10). pp. 2644-2651. ISSN 0093-3813

[img] PDF (Atrazhev_Timoshkin_et_al_TPS_2010.pdf)
Atrazhev_Timoshkin_et_al_TPS_2010.pdf
Restricted to Registered users only

Download (315kB) | Request a copy from the Strathclyde author

Abstract

The impulse dielectric behaviour of insulating liquids is of significant interest for researchers and engineers working in the field of design, construction and operation of pulsed power systems. Analysis of the literature data on transformer oils shows that potentially there are several different physical processes which could be responsible for dielectric breakdown by sub-microsecond and microsecond impulses. While for short, sub-microsecond impulses ionisation (plasma streamer) is likely to be the main breakdown mechanism, for longer impulses, thermal effects associated with Joule heating start to play an important role. The present paper is provides a theoretical analysis of the latter mechanism in dielectric liquids of different degrees of purity stressed with high voltage impulses with duration sufficient to cause local heating, evaporation and formation of pre-breakdown gas bubbles. The proposed model is based on the assumption that dielectric breakdown is developed through percolation channels of gas bubbles and the criterion of formation of these percolation chains is obtained. In order to test the developed model, the breakdown field-time characteristics have been calculated for the liquid with chemical composition close to that of transformer oils but with known thermodynamic characteristics (n-hexane). Its dielectric strength has been obtained as a function of externally applied pressure and temperature. The analytical results show a good agreement when compared with the experimental data available in the literature.