Picture water droplets

Developing mathematical theories of the physical world: Open Access research on fluid dynamics from Strathclyde

Strathprints makes available Open Access scholarly outputs by Strathclyde's Department of Mathematics & Statistics, where continuum mechanics and industrial mathematics is a specialism. Such research seeks to understand fluid dynamics, among many other related areas such as liquid crystals and droplet evaporation.

The Department of Mathematics & Statistics also demonstrates expertise in population modelling & epidemiology, stochastic analysis, applied analysis and scientific computing. Access world leading mathematical and statistical Open Access research!

Explore all Strathclyde Open Access research...

An Audio-based sports video segmentation and event detection algorithm

Baillie, M. and Jose, J.M. (2004) An Audio-based sports video segmentation and event detection algorithm. In: IEEE Workshop on Event Mining 2004: IEEE Computer Vision and Pattern Recognition, 2004-07-02.

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

In this paper, we present an audio-based event detection algorithm shown to be effective when applied to Soccer video. The main benefit of this approach is the ability to recognise patterns that display high levels of crowd response correlated to key events. The soundtrack from a Soccer sequence is first parameterised using Mel-frequency Cepstral coefficients. It is then segmented into homogenous components using a windowing algorithm with a decision process based on Bayesian model selection. This decision process eliminated the need for defining a heuristic set of rules for segmentation. Each audio segment is then labelled using a series of Hidden Markov model (HMM) classifiers, each a representation of one of 6 predefined semantic content classes found in Soccer video. Exciting events are identified as those segments belonging to a crowd cheering class. Experimentation indicated that the algorithm was more effective for classifying crowd response when compared to traditional model-based segmentation and classification techniques.