Picture of boy being examining by doctor at a tuberculosis sanatorium

Understanding our future through Open Access research about our past...

Strathprints makes available scholarly Open Access content by researchers in the Centre for the Social History of Health & Healthcare (CSHHH), based within the School of Humanities, and considered Scotland's leading centre for the history of health and medicine.

Research at CSHHH explores the modern world since 1800 in locations as diverse as the UK, Asia, Africa, North America, and Europe. Areas of specialism include contraception and sexuality; family health and medical services; occupational health and medicine; disability; the history of psychiatry; conflict and warfare; and, drugs, pharmaceuticals and intoxicants.

Explore the Open Access research of the Centre for the Social History of Health and Healthcare. Or explore all of Strathclyde's Open Access research...

Image: Heart of England NHS Foundation Trust. Wellcome Collection - CC-BY.

Understanding enzyme action on immobilised substrates

Halling, P.J. and Ulijn, R.V. and Flitsch, S.L. (2005) Understanding enzyme action on immobilised substrates. Current Opinion in Biotechnology, 16 (4). pp. 385-392. ISSN 0958-1669

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

With increasing interest in automated synthesis and screening protocols, solid supported chemistry and biochemistry are attractive technologies. Studies with surface-immobilised substrates have been carried out to analyse enzyme accessibility, kinetics and thermodynamics. Several interesting new methods have been developed to monitor enzyme action on substrates attached to a solid phase such as polymer beads glass or gold surfaces. These include fluorescence measurements, MALDI-TOF mass spectrometry, and the use of quartz crystal microbalances to measure weight changes of immobilised molecules directly on the surface. Approaches that allow spatial resolution in single beads have also been reported. The ability of enzymes to reach the inside of beads is becoming better characterised and new supports have been developed that allow improved accessibility. The equilibrium position of reactions on the solid surface can be substantially shifted compared with reactions in solution, and this can be usefully exploited using hydrolases in reverse. Research is also starting to tackle the way in which kinetics are modified when the substrates are surface immobilised.