Picture of industrial chimneys polluting horizon

Open Access research shaping international environmental governance...

Strathprints makes available scholarly Open Access content exploring environmental law and governance, in particular the work of the Strathclyde Centre for Environmental Law & Governance (SCELG) based within the School of Law.

SCELG aims to improve understanding of the trends, challenges and potential solutions across different interconnected areas of environmental law, including capacity-building for sustainable management of biodiversity, oceans, lands and freshwater, as well as for the fight against climate change. The intersection of international, regional, national and local levels of environmental governance, including the customary laws of indigenous peoples and local communities, and legal developments by private actors, is also a signifcant research specialism.

Explore Open Access research by SCELG or the School of Law. Or explore all of Strathclyde's Open Access research...

Reduced complexity schemes to greedy power allocation for multicarrier systems

Al-Hanafy, Waleed and Weiss, S. (2010) Reduced complexity schemes to greedy power allocation for multicarrier systems. In: The 18th International Conference on Microwave, Radar and Wireless Communications MIKON-2010, 2010-06-14 - 2010-06-18.

[img]
Preview
PDF (strathprints027158.pdf)
strathprints027158.pdf

Download (398kB) | Preview

Abstract

Discrete bit loading for multicarrier systems based on the greedy power allocation (GPA) algorithm is considered in this paper. A new suboptimal scheme that independently performs GPA on groups of subcarriers and therefore can significantly reduce complexity compared to the standard GPA is proposed. These groups are formed in an initial step of a uniform power allocation (UPA) algorithm. In order to more efficiently allocate the available transmit power, two power re-distribution algorithms are further introduced by including a transfer of residual power between groups. Simulation results show that the two proposed algorithms can achieve near optimal performance in two separate and distinctive SNR regions. We demonstrate by analysis how these methods can greatly simplify the computational complexity of the GPA algorithm.