Picture of automobile manufacturing plant

Driving innovations in manufacturing: Open Access research from DMEM

Strathprints makes available Open Access scholarly outputs by Strathclyde's Department of Design, Manufacture & Engineering Management (DMEM).

Centred on the vision of 'Delivering Total Engineering', DMEM is a centre for excellence in the processes, systems and technologies needed to support and enable engineering from concept to remanufacture. From user-centred design to sustainable design, from manufacturing operations to remanufacturing, from advanced materials research to systems engineering.

Explore Open Access research by DMEM...

An ant system algorithm for automated trajectory planning

Ceriotti, M. and Vasile, M. (2010) An ant system algorithm for automated trajectory planning. In: World Congress on Computational Intelligence, WCCI 2010, 2010-07-18 - 2010-07-23, Barcelona, Spain.

[img]
Preview
PDF (Ceriotti_M_&_Vasile_M_-_strathprints_-_An_ant_system_algorithm_for_automated_trajectory_planning_Jul_2010.pdf)
Ceriotti_M_&_Vasile_M_-_strathprints_-_An_ant_system_algorithm_for_automated_trajectory_planning_Jul_2010.pdf

Download (402kB) | Preview

Abstract

The paper presents an Ant System based algorithm to optimally plan multi-gravity assist trajectories. The algorithm is designed to solve planning problems in which there is a strong dependency of one decision one all the previously made decisions. In the case of multi-gravity assist trajectories planning, the number of possible paths grows exponentially with the number of planetary encounters. The proposed algorithm avoids scanning all the possible paths and provides good results at a low computational cost. The algorithm builds the solution incrementally, according to Ant System paradigms. Unlike standard ACO, at every planetary encounter, each ant makes a decision based on the information stored in a tabu and feasible list. The approach demonstrated to be competitive, on a number of instances of a real trajectory design problem, against known GA and PSO algorithms.