Picture of sea vessel plough through rough maritime conditions

Innovations in marine technology, pioneered through Open Access research...

Strathprints makes available scholarly Open Access content by researchers in the Department of Naval Architecture, Ocean & Marine Engineering based within the Faculty of Engineering.

Research here explores the potential of marine renewables, such as offshore wind, current and wave energy devices to promote the delivery of diverse energy sources. Expertise in offshore hydrodynamics in offshore structures also informs innovations within the oil and gas industries. But as a world-leading centre of marine technology, the Department is recognised as the leading authority in all areas related to maritime safety, such as resilience engineering, collision avoidance and risk-based ship design. Techniques to support sustainability vessel life cycle management is a key research focus.

Explore the Open Access research of the Department of Naval Architecture, Ocean & Marine Engineering. Or explore all of Strathclyde's Open Access research...

Identifying epidemiological factors affecting sea lice (Lepeophtheirus salmonis)abundance on Scottish salmon farms using general linear models

Revie, C.W. and Gettinby, G. and Treasurer, J.W. and Wallace, C. (2003) Identifying epidemiological factors affecting sea lice (Lepeophtheirus salmonis)abundance on Scottish salmon farms using general linear models. Diseases of Aquatic Organisms, 57 (1-2). pp. 85-95. ISSN 0177-5103

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

The variation in Lepeophtheirus salmonis sea lice numbers across 40 Scottish salmon farm sites during 1996 to 2000 was analysed using mean mobile abundance for 3 important 6 mo periods within the production cycle. Using statistical regression techniques, over 20 management and environmental variables suspected to have an effect on controlling lice populations were investigated as potential risk factors. The findings and models developed provide a picture of mobile L. salmonis infestation patterns on Scottish farm sites collectively. The results identified level of treatment, type of treatment, cage volume, current speed, loch flushing time and sea lice levels in the preceding 6 mo period to be key explanatory factors. Factors such as stocking density, site biomass, water temperature and the presence of neighbours, previously cited to be important correlates of sea lice risk from analysis of individual sites over time, were not found to be important. Variation in mobile abundance in the first half of the second year of production could be adequately explained (adjusted R2 between 55 and 72%) by the recorded data, suggesting that there is scope for management to control L. salmonis abundance, though much of the variation remains unexplained.