Picture map of Europe with pins indicating European capital cities

Open Access research with a European policy impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the European Policies Research Centre (EPRC).

EPRC is a leading institute in Europe for comparative research on public policy, with a particular focus on regional development policies. Spanning 30 European countries, EPRC research programmes have a strong emphasis on applied research and knowledge exchange, including the provision of policy advice to EU institutions and national and sub-national government authorities throughout Europe.

Explore research outputs by the European Policies Research Centre...

Applications of mass spectrometry in metabolomic studies of animal model and invertebrate systems

Kamleh, M.A. and Dow, J.A.T. and Watson, D.G. (2009) Applications of mass spectrometry in metabolomic studies of animal model and invertebrate systems. Briefings in Functional Genomics and Proteomics, 8 (1). pp. 28-48. ISSN 1473-9550

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Metabolomics provides rich datasets for systems biology. Mass spectrometric (MS) techniques are rapidly gaining in importance for untargeted metabolic profiling. In this review, we survey the various techniques for sample preparation and analysis relating to the various MS techniques and illustrate the potential of these techniques for both observing complete metabolomes and detecting changes in the metabolism resulting from genetic mutation of other perturbations. The use of some of these techniques in the study of model organisms including rodent and various invertebrate models is described. The invertebrate systems are of particular interest since such organisms have valuable mutant resources, such as RNAi panels directed against nearly all the genes in the genome. The demonstration that they are readily compatible with metabolomic approaches is particularly important for systems approaches to metabolic pathways.