Picture of blood cells

Open Access research which pushes advances in bionanotechnology

Strathprints makes available scholarly Open Access content by researchers in the Strathclyde Institute of Pharmacy & Biomedical Sciences (SIPBS) , based within the Faculty of Science.

SIPBS is a major research centre in Scotland focusing on 'new medicines', 'better medicines' and 'better use of medicines'. This includes the exploration of nanoparticles and nanomedicines within the wider research agenda of bionanotechnology, in which the tools of nanotechnology are applied to solve biological problems. At SIPBS multidisciplinary approaches are also pursued to improve bioscience understanding of novel therapeutic targets with the aim of developing therapeutic interventions and the investigation, development and manufacture of drug substances and products.

Explore the Open Access research of SIPBS. Or explore all of Strathclyde's Open Access research...

Identification of fuzzy relational models from unevenly distributed data using optimization methods

Sing, Christoph and Postlethwaite, Bruce (2000) Identification of fuzzy relational models from unevenly distributed data using optimization methods. Chemical Engineering Research and Design, 78 (4). pp. 522-527. ISSN 0263-8762

Full text not available in this repository.Request a copy from the Strathclyde author

Abstract

A wide range of algorithms for Fuzzy Relational Model (FRM) identification from process data have been developed over the last decade. It has been shown that the use of multi-variable optimization methods to establish the strengths of fuzzy relationships results in accurate models. Accuracy means here, however, the fit between training data and model predictions. If the available training data is unevenly distributed then optimization results in good model fit in regions where training data is clustered, but the regions where training data is sparse are less well modelled. The problem is frequently encountered as little influence is often possible on how training data is acquired. In this paper identification methods are proposed which take into account the distribution of training data. To enhance the model quality over the entire model range the input space is divided into regions in which the model error is considered separately during optimization. It is shown that the division of the input space by fuzzy partitioning is not sufficient. Problems which can occur due to unevenly distributed data are discussed and, based on the fuzzy partitioning, a new division of the input space is derived. These new input regions are described using rectangular or triangular fuzzy sets. It is shown that both shapes of fuzzy regions result in FRM with better predictive capabilities on unseen process data. An example for the application of the FRM in a Model Predictive Controller (MPC) is also given.