Picture map of Europe with pins indicating European capital cities

Open Access research with a European policy impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the European Policies Research Centre (EPRC).

EPRC is a leading institute in Europe for comparative research on public policy, with a particular focus on regional development policies. Spanning 30 European countries, EPRC research programmes have a strong emphasis on applied research and knowledge exchange, including the provision of policy advice to EU institutions and national and sub-national government authorities throughout Europe.

Explore research outputs by the European Policies Research Centre...

Enzymatic solid-to-solid peptide synthesis

Erbeldinger, M. and Eichhorn, U. and Kuhl, P. and Halling, P.J. (2001) Enzymatic solid-to-solid peptide synthesis. In: Methods in Biotechnology: Enzymes in Nonaqueous Solvents. Methods in Biotechnology, 15 . Humana Press, NJ, USA, pp. 471-477. ISBN 089603-9293

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Solid-to-solid peptide synthesis is an enzyme-catalyzed reaction carried out in a mixture consisting of solid substrates and up to 20% (w/w) of enzyme solution in water. No organic solvents are necessary for the preparation of the initial reaction mixtures. Generally, solid-to-solid synthesis is considered to be a low-water reaction system because of the very high overall concentration of substrates used. However, from the enzyme's 'viewpoint,' the reaction mixture is just an aqueous solution saturated with substrates, as this is where the actual biotransformation takes place. Therefore, this approach combines advantages of both water- and solvent-based systems (i.e., high enzyme activity, high substrate concentration, and high degree of conversion to the final product). Another attraction of solid-to-solid synthesis is that it enables improved volumetric productivity in the reactor to be achieved. The avoidance of organic solvents is often advantageous too, especially for applications in the pharmaceutical and food industry.