Picture water droplets

Developing mathematical theories of the physical world: Open Access research on fluid dynamics from Strathclyde

Strathprints makes available Open Access scholarly outputs by Strathclyde's Department of Mathematics & Statistics, where continuum mechanics and industrial mathematics is a specialism. Such research seeks to understand fluid dynamics, among many other related areas such as liquid crystals and droplet evaporation.

The Department of Mathematics & Statistics also demonstrates expertise in population modelling & epidemiology, stochastic analysis, applied analysis and scientific computing. Access world leading mathematical and statistical Open Access research!

Explore all Strathclyde Open Access research...

Extending the use of plateau-escaping macro-actions in planning

Smith, Amanda (2006) Extending the use of plateau-escaping macro-actions in planning. In: International Conference on Automated Planning and Scheduling (ICAPS), 2006-06-06 - 2006-06-10.

[img]
Preview
Text (strathprints002388)
strathprints002388.pdf
Accepted Author Manuscript

Download (69kB) | Preview

Abstract

Many fully automated planning systems use a single, domain independent heuristic to guide search and no other problem specific guidance. While these systems exhibit excellent performance, they are often out-performed by systems which are either given extra human-encoded search information, or spend time learning additional search control information offline. The benefit of systems which do not require human intervention is that they are much closer to the ideal of autonomy. This document discusses a system which learns additional control knowledge, in the form of macro-actions, during planning, without the additional time required for an online learning step. The results of various techniques for managing the collection of macro-actions generated are also discussed. Finally, an explanation of the extension of the techniques to other planning systems is presented.