Evolution from A +2 Defect to +1/2 Defects in a Cylindrical Geometry
Miroshnychenko, Dmitri and Hill, N.A. and Mottram, N.J. and Lydon, J.E. (2005) Evolution from A +2 Defect to +1/2 Defects in a Cylindrical Geometry. Molecular Crystals and Liquid Crystals, 437. pp. 1495-1512. (http://journalsonline.tandf.co.uk/openurl.asp?genr...)
Full text not available in this repository.Request a copyAbstract
In this work the dynamics of liquid crystal ordering in a cylindrical geometry are considered. We study a system with liquid crystalline properties that exhibits translational symmetry along the cylinder axis and, therefore, the problem is effectively two-dimensional. The orientation of liquid crystals is described by a tensorial order parameter and the dynamics are governed by a balance between the dissipation and the rate of change of free energy, which includes the elastic, thermotropic and surface energy terms. The evolution of the + 2 defect differentiating first into two + 1 disclinations and subsequently into four + 1/2 defects is analysed. Different boundary conditions, namely strong and weak or no anchoring, have been considered and the critical value for the anchoring strength, at which + 1/2 defects are very close to escaping through the boundary but still remain there at equilibrium, has been identified.
ORCID iDs
Miroshnychenko, Dmitri, Hill, N.A., Mottram, N.J. ORCID: https://orcid.org/0000-0002-7265-0059 and Lydon, J.E.;-
-
Item type: Article ID code: 2242 Dates: DateEvent2005PublishedNotes: The references of this article are secured to subscribers. The DOI requested -- 10.1080/15421400590955334 cannot be found in the Handle System. Subjects: Science > Physics Department: Faculty of Science > Mathematics and Statistics Depositing user: Dr Nigel Mottram Date deposited: 06 Dec 2006 Last modified: 03 Jan 2025 02:34 URI: https://strathprints.strath.ac.uk/id/eprint/2242