Picture of classic books on shelf

Literary linguistics: Open Access research in English language

Strathprints makes available Open Access scholarly outputs by English Studies at Strathclyde. Particular research specialisms include literary linguistics, the study of literary texts using techniques drawn from linguistics and cognitive science.

The team also demonstrates research expertise in Renaissance studies, researching Renaissance literature, the history of ideas and language and cultural history. English hosts the Centre for Literature, Culture & Place which explores literature and its relationships with geography, space, landscape, travel, architecture, and the environment.

Explore all Strathclyde Open Access research...

A numerical investigation of heat transfer cardiac output measurements

Fotheringham, P. and Gourlay, A.R. and McKee, S. and Andrews, S. (2005) A numerical investigation of heat transfer cardiac output measurements. Journal of Theoretical Medicine, 6 (3). pp. 161-172. ISSN 1027-3662

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Measurement of cardiac output is often investigated using a technique based on hot-film anemometry. Here, we discuss a modification to hot-film anemometry, which involves a cylindrical heating element mounted flush on the surface of a typical Swan-Ganz catheter. In contrast to traditional thermodilution, the method discussed here has the potential to allow continuous monitoring of cardiac output. This paper demonstrates that there is a simple approximate relationship between the power input to the device to maintain a temperature of one degree above blood heat and cardiac output. Since, the heat transfer and the fluid flow decouple, a numerical model of the heat transfer of a cylindrical catheter (with heating element) sitting concentrically within a rigid cylindrical artery is developed. Numerical results were obtained for a wide selection of flow profiles, including experimental data. The results indicate that the cardiac output/power input relationship is extremely robust with respect to flow profile and system parameter variation.