Picture water droplets

Developing mathematical theories of the physical world: Open Access research on fluid dynamics from Strathclyde

Strathprints makes available Open Access scholarly outputs by Strathclyde's Department of Mathematics & Statistics, where continuum mechanics and industrial mathematics is a specialism. Such research seeks to understand fluid dynamics, among many other related areas such as liquid crystals and droplet evaporation.

The Department of Mathematics & Statistics also demonstrates expertise in population modelling & epidemiology, stochastic analysis, applied analysis and scientific computing. Access world leading mathematical and statistical Open Access research!

Explore all Strathclyde Open Access research...

Theoretical model of the transition between C1 and C2 chevron structures in smectic liquid crystals

Diaz, A. and Mottram, N.J. and McKay, G. (2005) Theoretical model of the transition between C1 and C2 chevron structures in smectic liquid crystals. European Physical Journal E - Soft Matter, 18 (2). pp. 231-237. ISSN 1292-8941

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

We present a study of the effect of weak anchoring on the transition between C1 and C2 chevron structures in smectic-C liquid crystals. The coexistence of C1 and C2 chevron structures within a single cell causes zigzag defects to occur and may affect the optical characteristics of the cell. By standard Euler-Lagrange minimisation of the total energy of the system, we obtain analytical expressions for the equilibrium director cone angle in the two chevron states. These in turn allow us to compare the total energies of the states and determine the globally stable chevron profile. We show that analytical predictions for the critical transition temperature, which depends on anchoring strength and pretilt angle, are in good agreement with those obtained numerically.