Picture water droplets

Developing mathematical theories of the physical world: Open Access research on fluid dynamics from Strathclyde

Strathprints makes available Open Access scholarly outputs by Strathclyde's Department of Mathematics & Statistics, where continuum mechanics and industrial mathematics is a specialism. Such research seeks to understand fluid dynamics, among many other related areas such as liquid crystals and droplet evaporation.

The Department of Mathematics & Statistics also demonstrates expertise in population modelling & epidemiology, stochastic analysis, applied analysis and scientific computing. Access world leading mathematical and statistical Open Access research!

Explore all Strathclyde Open Access research...

Dispersive and dissipative behaviour of high order discontinuous Galerkin finite element methods

Ainsworth, M. (2004) Dispersive and dissipative behaviour of high order discontinuous Galerkin finite element methods. Journal of Computational Physics, 198 (1). pp. 106-130. ISSN 0021-9991

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

The dispersive and dissipative properties of hp version discontinuous Galerkin finite element approximation are studied in three different limits. For the small wave-number limit hk→0, we show the discontinuous Galerkin gives a higher order of accuracy than the standard Galerkin procedure, thereby confirming the conjectures of Hu and Atkins [J. Comput. Phys. 182 (2) (2002) 516]. If the mesh is fixed and the order p is increased, it is shown that the dissipation and dispersion errors decay at a super-exponential rate when the order p is much larger than hk. Finally, if the order is chosen so that 2p+1≈κhk for some fixed constant κ>1, then it is shown that an exponential rate of decay is obtained.