Picture map of Europe with pins indicating European capital cities

Open Access research with a European policy impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the European Policies Research Centre (EPRC).

EPRC is a leading institute in Europe for comparative research on public policy, with a particular focus on regional development policies. Spanning 30 European countries, EPRC research programmes have a strong emphasis on applied research and knowledge exchange, including the provision of policy advice to EU institutions and national and sub-national government authorities throughout Europe.

Explore research outputs by the European Policies Research Centre...

Preconditioned implicit solution of linear hyperbolic equations with adaptivity

Lötstedt, Per and Ramage, Allison and von Sydow, Lina and Söderberg, Stefan (2004) Preconditioned implicit solution of linear hyperbolic equations with adaptivity. Journal of Computational and Applied Mathematics, 194 (2). pp. 269-289. ISSN 0377-0427

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

This paper describes a method for solving hyperbolic partial differential equations using an adaptive grid: the spatial derivatives are discretised with a finite volume method on a grid which is structured and partitioned into blocks which may be refined and derefined as the solution evolves. The solution is advanced in time via a backward differentiation formula. The discretisation used is second-order accurate and stable on Cartesian grids. The resulting system of linear equations is solved by GMRES at every time-step with the convergence of the iteration being accelerated by a semi-Toeplitz preconditioner. The efficiency of this preconditioning technique is analysed and numerical experiments are presented which illustrate the behaviour of the method on a parallel computer.