Picture water droplets

Developing mathematical theories of the physical world: Open Access research on fluid dynamics from Strathclyde

Strathprints makes available Open Access scholarly outputs by Strathclyde's Department of Mathematics & Statistics, where continuum mechanics and industrial mathematics is a specialism. Such research seeks to understand fluid dynamics, among many other related areas such as liquid crystals and droplet evaporation.

The Department of Mathematics & Statistics also demonstrates expertise in population modelling & epidemiology, stochastic analysis, applied analysis and scientific computing. Access world leading mathematical and statistical Open Access research!

Explore all Strathclyde Open Access research...

Molecular simulation of chevrons in confined smectic liquid crystals

Mottram, N. and Webster, R.E. and Cleaver, D.J. (2003) Molecular simulation of chevrons in confined smectic liquid crystals. Physical Review E: Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 68. 021706-1. ISSN 1063-651X

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Chevron structures adopted by confined smectic liquid crystals are investigated via molecular dynamics simulations of the Gay-Berne model. The chevrons are formed by quenching nematic films confined between aligning planar substrates whose easy axes have opposing azimuthal components. When the substrates are perfectly smooth, the chevron formed migrates rapidly towards one of the confining walls to yield a tilted layer structure. However, when substrate roughness is included, by introducing a small-amplitude modulation to the particle-substrate interaction well depth, a symmetric chevron is formed which remains stable over sufficiently long run times for detailed structural information, such as the relevant order parameters and director orientation, to be determined. For both smooth and rough boundaries, the smectic order parameter remains nonzero across the entire chevron, implying that layer identity is maintained across the chevron tip. Also, when the surface-stabilized chevron does eventually revert to a tilted layer structure, it does so via surface slippage, such that layer integrity is maintained throughout the chevron to tilted layer relaxation process.