Picture water droplets

Developing mathematical theories of the physical world: Open Access research on fluid dynamics from Strathclyde

Strathprints makes available Open Access scholarly outputs by Strathclyde's Department of Mathematics & Statistics, where continuum mechanics and industrial mathematics is a specialism. Such research seeks to understand fluid dynamics, among many other related areas such as liquid crystals and droplet evaporation.

The Department of Mathematics & Statistics also demonstrates expertise in population modelling & epidemiology, stochastic analysis, applied analysis and scientific computing. Access world leading mathematical and statistical Open Access research!

Explore all Strathclyde Open Access research...

Synclinic and anticlinic ordering in frustrated smectics

Osipov, M.A. and Fukuda, A. and Hakoi, H. (2003) Synclinic and anticlinic ordering in frustrated smectics. Molecular Crystals and Liquid Crystals, 402 (1). pp. 473-474. ISSN 1542-1406

Full text not available in this repository. Request a copy from the Strathclyde author


Molecular origin of synclinic and anticlinic ordering in the smectic-C and smectic-CA phases is considered in detail. The model potential for the anticlinic phase is proposed and possible contributions between various intermolecular interactions are discussed. It is concluded that conventional dispersion and steric interactions between mesogenic molecules generally do not promote the Sm-CA phase. A particular model of the anticlinic phase is proposed which is based on interlayer orientational correlations between transverse molecular dipoles located in the flexible chains. Such correlations are not sensitive to molecular chirality and thus the theory accounts for the formation of the anticlinic phase in racemic mixtures. Finally the microscopic origin of ferrielectric and antiferroelectric subphases is discussed and the concept of the 'discrete' flexoelectric effect is introduced which can in principle be used to explain the particular structure of subphases.