Picture map of Europe with pins indicating European capital cities

Open Access research with a European policy impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the European Policies Research Centre (EPRC).

EPRC is a leading institute in Europe for comparative research on public policy, with a particular focus on regional development policies. Spanning 30 European countries, EPRC research programmes have a strong emphasis on applied research and knowledge exchange, including the provision of policy advice to EU institutions and national and sub-national government authorities throughout Europe.

Explore research outputs by the European Policies Research Centre...

Form factor for large quantum graphs: evaluating orbits with time-reversal

Berkolaiko, G. (2004) Form factor for large quantum graphs: evaluating orbits with time-reversal. Waves in Random Media, 14. S7-S27. ISSN 0959-7174

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

It has been shown that for a certain special type of quantum graphs the random-matrix form factor can be recovered to at least third order in the scaled time t using periodic-orbit theory. Two types of contributing pairs of orbits were identified: those which require time-reversal symmetry and those which do not. We present a new technique of dealing with contributions from the former type of orbits. The technique allows us to derive the third-order term of the expansion for general graphs. Although the derivation is rather technical, the advantages of the technique are obvious: it makes the derivation tractable, it identifies explicitly the orbit configurations which give the correct contribution and it is more algorithmic and more system-independent, making possible future applications of the technique to systems other than quantum graphs.