Picture water droplets

Developing mathematical theories of the physical world: Open Access research on fluid dynamics from Strathclyde

Strathprints makes available Open Access scholarly outputs by Strathclyde's Department of Mathematics & Statistics, where continuum mechanics and industrial mathematics is a specialism. Such research seeks to understand fluid dynamics, among many other related areas such as liquid crystals and droplet evaporation.

The Department of Mathematics & Statistics also demonstrates expertise in population modelling & epidemiology, stochastic analysis, applied analysis and scientific computing. Access world leading mathematical and statistical Open Access research!

Explore all Strathclyde Open Access research...

Backward error and condition of structured linear systems

Higham, Desmond J. and Higham, Nicholas J. (1992) Backward error and condition of structured linear systems. SIAM Journal on Matrix Analysis and Applications, 13 (1). pp. 162-175. ISSN 0895-4798

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Existing definitions of backward error and condition number for linear systems do not cater to structure in the coefficient matrix, except possibly for sparsity. The definitions are extended so that when the coefficient matrix has structure the perturbed matrix has this structure too. It is shown that when the structure comprises linear dependence on a set of parameters, the structured componentwise backward error is given by the solution of minimal $infty $ -norm to an underdetermined linear system; an explicit expression for the condition number in this linear case is also obtained. Applications to symmetric matrices, Toeplitz matrices and the least squares problem are discussed and illustrated through numerical examples.