Picture water droplets

Developing mathematical theories of the physical world: Open Access research on fluid dynamics from Strathclyde

Strathprints makes available Open Access scholarly outputs by Strathclyde's Department of Mathematics & Statistics, where continuum mechanics and industrial mathematics is a specialism. Such research seeks to understand fluid dynamics, among many other related areas such as liquid crystals and droplet evaporation.

The Department of Mathematics & Statistics also demonstrates expertise in population modelling & epidemiology, stochastic analysis, applied analysis and scientific computing. Access world leading mathematical and statistical Open Access research!

Explore all Strathclyde Open Access research...

The N-soliton solution of a generalized Vakhnenko equation

Morrison, A.J. and Parkes, E.J. (2001) The N-soliton solution of a generalized Vakhnenko equation. Glasgow Mathematical Journal, 43 (A). pp. 65-90. ISSN 0017-0895

Full text not available in this repository. Request a copy from the Strathclyde author


The N-soliton solution of a generalised Vakhnenko equation is found, where N is an arbitrary positive integer. The solution, which is obtained by using a blend of transformations of the independent variables and Hirota's method, is expressed in terms of a Moloney and Hodnett (1989) type decomposition. Different types of soliton are possible, namely loops, humps or cusps. Details of the different types of interactions between solitons, including resonant soliton interactions, are discussed in detail for the case N=2. A proof of the 'N-soliton condition' is given in the Appendix.