Picture map of Europe with pins indicating European capital cities

Open Access research with a European policy impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the European Policies Research Centre (EPRC).

EPRC is a leading institute in Europe for comparative research on public policy, with a particular focus on regional development policies. Spanning 30 European countries, EPRC research programmes have a strong emphasis on applied research and knowledge exchange, including the provision of policy advice to EU institutions and national and sub-national government authorities throughout Europe.

Explore research outputs by the European Policies Research Centre...

Componentwise perturbation theory for linear systems with multiple right-hand sides

Higham, D.J. and Higham, N.J. (1992) Componentwise perturbation theory for linear systems with multiple right-hand sides. Linear Algebra and Its Applications, 174. pp. 111-130. ISSN 0024-3795

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Existing definitions of componentwise backward error and componentwise condition number for linear systems are extended to systems with multiple right-hand sides and to a general class of componentwise measure of perturbations involving Hölder p-norms. It is shown that for a system of order n with r right-hand sides, the componentwise backward error can be computed by finding the minimum p-norm solutions to n underdetermined linear systems, and an explicit expression is obtained in the case r = 1. A perturbation bound is derived, and from this the componentwise condition number is obtained to within a multiplicative constant. Applications of the results are discussed to invariant subspace computations, quasi-Newton methods based on multiple secant equations, and an inverse ODE problem.