Picture map of Europe with pins indicating European capital cities

Open Access research with a European policy impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the European Policies Research Centre (EPRC).

EPRC is a leading institute in Europe for comparative research on public policy, with a particular focus on regional development policies. Spanning 30 European countries, EPRC research programmes have a strong emphasis on applied research and knowledge exchange, including the provision of policy advice to EU institutions and national and sub-national government authorities throughout Europe.

Explore research outputs by the European Policies Research Centre...

The tolerance proportionality of adaptive ODE solvers

Higham, D.J. (1993) The tolerance proportionality of adaptive ODE solvers. Journal of Computational and Applied Mathematics, 45 (1-2). pp. 227-236. ISSN 0377-0427

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Modern software for solving ordinary differential equation (ODE) initial-value problems requires the user to specify the ODE and choose a value for the error tolerance. The software can be thought of as a black box with a dial - turning the dial changes the accuracy and expense of the integration process. It is therefore of interest to know how the global error varies with the error tolerance. In this work, we look at explicit Runge-Kutta methods and show that with any standard error control method, and ignoring higher-order terms, the global error in the numerical solution behaves like a known rational power of the error tolerance. This generalises earlier work of Stetter, who found sufficient conditions for the global error to be linear in the tolerance. We also display the order of the next-highest term. We then analyse continuous Runge-Kutta schemes, and show what order of interpolation is necessary and sufficient for the continuous approximation to inherit the tolerance proportionality of the discrete formula. Finally we extend the results to the case of ODE systems with constant delays, thereby generalising some previous results of the author.