Theory of extraordinary light transmission through arrays of subwavelength slits
Sturman, B. and Podivilov, E. and Gorkunov, M.V. (2008) Theory of extraordinary light transmission through arrays of subwavelength slits. Physical Review B, 77 (7). ISSN 1098-0121 (http://dx.doi.org/10.1103/PhysRevB.77.075106)
Full text not available in this repository.Request a copyAbstract
We propose a self-consistent theory of the extraordinary light transmission through periodic arrays of subwavelength holes in metals. Its basis is an expansion of the light fields in terms of exact eigenmodes- propagating, evanescent, and anomalous-investigated in our recent paper and matching at the interfaces using the exact boundary conditions. An excellent convergence of this expansion has allowed us to decompose the anomalous transmission phenomenon into elementary parts and to investigate the characteristic parametric dependences. Transmission properties of a single interface play a key role in our theory in the subwavelength range. They include the coefficient of energy transmission into the propagating mode and the phases of the reflected and transmitted waves. These key parameters possess remarkable resonant dependences on the wavelength of light; they are sensitive to the size of the holes and rather insensitive to weak losses. The surfaceplasmon- related features of the above characteristics are established. Transmission properties of a slab are expressed by the single-interface parameters, the phase incursion for the propagating mode, and the propagating losses.
-
-
Item type: Article ID code: 19759 Dates: DateEventFebruary 2008PublishedSubjects: Science > Physics Department: Faculty of Science > Mathematics and Statistics > Mathematics Depositing user: Strathprints Administrator Date deposited: 02 Jun 2010 16:49 Last modified: 11 Nov 2024 09:20 URI: https://strathprints.strath.ac.uk/id/eprint/19759