Picture map of Europe with pins indicating European capital cities

Open Access research with a European policy impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the European Policies Research Centre (EPRC).

EPRC is a leading institute in Europe for comparative research on public policy, with a particular focus on regional development policies. Spanning 30 European countries, EPRC research programmes have a strong emphasis on applied research and knowledge exchange, including the provision of policy advice to EU institutions and national and sub-national government authorities throughout Europe.

Explore research outputs by the European Policies Research Centre...

Aligning VLBI images of active galactic nuclei at different frequencies

Croke, Sarah M. and Gabuzda, D.C. (2008) Aligning VLBI images of active galactic nuclei at different frequencies. Monthly Notices of the Royal Astronomical Society, 386 (2). pp. 619-626. ISSN 0035-8711

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Many important techniques for investigating the properties of extragalactic radio sources, such as spectral-index and rotation-measure mapping, involve the comparison of images at two or more frequencies. In the case of radio interferometric data, this can be done by comparing the CLEAN maps obtained at the different frequencies. However, intrinsic differences in images due to the frequency dependence of the radio emission can be distorted by additional differences that arise due to source variability (if the data to be compared are obtained at different times), image misalignment, and the frequency dependence of the sensitivity to weak emission and the angular resolution provided by the observations (the resolution of an interferometer depends on the lengths of its baselines in units of the observing wavelength). These effects must be corrected for as best as possible before multifrequency data comparison techniques can be applied. We consider the origins for the aforementioned factors, outline the standard techniques used to overcome these difficulties, and describe in detail a technique developed by us, based on the cross-correlation technique widely used in other fields, to correct for misalignments between maps at different frequencies.