Optimal long-term design, rehabilitation and upgrading of water distribution networks
Tanyimboh, T. and Kalungi, P. (2008) Optimal long-term design, rehabilitation and upgrading of water distribution networks. Engineering Optimization, 40 (7). pp. 637-654. ISSN 0305-215X (http://dx.doi.org/10.1080/03052150801981915)
Full text not available in this repository.Request a copyAbstract
Given a limited budget, the choice of the best water distribution network upgrading strategy is a complex optimization problem. A model for the optimal long-term design and upgrading of new and existing water distribution networks is presented. A key strength of the methodology is the use of maximum entropy flows, which reduces the size of the problem and enables the application of linear programming for pipe size optimization. It also ensures the reliability level is high. The capital and maintenance costs and hydraulic performance are considered simultaneously for a predefined design horizon. The timing of upgrading over the entire planning horizon is obtained by dynamic programming. The deterioration over time of the structural integrity and hydraulic capacity of every pipe are explicitly considered. The upgrading options considered include pipe paralleling and replacement. The effectiveness of the model is demonstrated using the water supply network of Wobulenzi town in Uganda.
ORCID iDs
Tanyimboh, T. ORCID: https://orcid.org/0000-0003-3741-7689 and Kalungi, P.;-
-
Item type: Article ID code: 19619 Dates: DateEvent2008PublishedSubjects: Technology > Manufactures
Science > Mathematics
Technology > Engineering (General). Civil engineering (General)Department: Faculty of Engineering > Civil and Environmental Engineering Depositing user: Strathprints Administrator Date deposited: 27 May 2010 11:30 Last modified: 04 Jan 2025 03:30 URI: https://strathprints.strath.ac.uk/id/eprint/19619