Fragmentation of carbohydrate anomeric alkoxyl radicals: new synthesis of chiral 1-fluoro-1-halo-1-iodoalditols
Francisco, C.G. and Gonzalez, C.C. and Kennedy, A.R. and Paz, N.R. and Suarez, E. (2008) Fragmentation of carbohydrate anomeric alkoxyl radicals: new synthesis of chiral 1-fluoro-1-halo-1-iodoalditols. Chemistry - A European Journal, 14 (22). pp. 6704-6712. ISSN 1521-3765 (http://dx/doi.org/10.1002/chem.200800734)
Full text not available in this repository.Request a copyAbstract
Anew general methodology for the synthesis of 1,1,1-trihaloalditols by starting from 1,5-anhydro-2-deoxyhex- 1-enitol derivatives (glycals) is described. The halogens are introduced sequentially in each of the three different steps of the process. The fluorine is introduced in the first step by electrophilic fluorination of the starting glycal; next, hydroxyhalogenation of the resulting vinyl fluoride allows the addition of any halogen (F, Cl, Br or I) at will, and finally, an iodine atom is inserted through an alkoxyl radical fragmentation reaction. This methodology allows the preparation of diverse types of 1,1,1-trihalogenated compounds (R CF2I, RCFI2, RCFClI and R CFBrI) under mild conditions compatible with sensitive substituents. In some cases, the diastereomeric mixtures generated from RCFClI and RCFBrI can be chromatographically separated, and their configuration determined by X-ray crystallographic analysis. The synthetic usefulness of these compounds has been preliminarily assessed by examining the reactivity of the fluorinated radical generated by rupture of the CI bond.
ORCID iDs
Francisco, C.G., Gonzalez, C.C., Kennedy, A.R. ORCID: https://orcid.org/0000-0003-3652-6015, Paz, N.R. and Suarez, E.;-
-
Item type: Article ID code: 19569 Dates: DateEvent2008PublishedSubjects: Science > Chemistry Department: Faculty of Science > Pure and Applied Chemistry
Faculty of Engineering > Electronic and Electrical EngineeringDepositing user: Strathprints Administrator Date deposited: 01 Jun 2010 10:19 Last modified: 04 Jan 2025 01:20 URI: https://strathprints.strath.ac.uk/id/eprint/19569