Picture map of Europe with pins indicating European capital cities

Open Access research with a European policy impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the European Policies Research Centre (EPRC).

EPRC is a leading institute in Europe for comparative research on public policy, with a particular focus on regional development policies. Spanning 30 European countries, EPRC research programmes have a strong emphasis on applied research and knowledge exchange, including the provision of policy advice to EU institutions and national and sub-national government authorities throughout Europe.

Explore research outputs by the European Policies Research Centre...

Synthetic diamond for intracavity thermal management in compact solid-state lasers

Millar, P. and Birch, R.B. and Kemp, A.J. and Burns, D. (2008) Synthetic diamond for intracavity thermal management in compact solid-state lasers. IEEE Journal of Quantum Electronics, 44 (7-8). pp. 709-717. ISSN 0018-9197

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

The intracavity use of newly developed low-birefringence synthetic diamond for thermal management in compact solid-state lasers is examined both experimentally and theoretically. A comparison-using single-crystal natural diamond as a base line-is made between synthetic, single-crystal diamond types: chemical vapor deposition and high pressure/high temperature grown diamond. The synthetic diamond samples are shown to possess significantly lower birefringence than often occurs in natural single-crystal diamond while maintaining the excellent thermal management properties and low insertion loss of natural diamond. Low threshold, high efficiency laser operation is demonstrated in polarization sensitive cavities incorporating intracavity synthetic diamond using both doped-dielectric and semiconductor gain elements. In addition, finite element analysis is used to demonstrate the potential of diamond to reduce thermal distortion and stress in doped-dielectric disk lasers. A 15W Nd:GdVO􀀀 disk laser utilizing diamond is demonstrated. These results highlight the potential of low birefringence synthetic diamond for intracavity thermal management applications in solid-state lasers. (Abstract from: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4531694)