The interaction of a flowing plasma with a dipole magnetic field: measurements and modelling of a diamagnetic cavity relevant to spacecraft protection
Bamford, R. and Gibson, K.J. and Thornton, A.J. and Bradford, J. and Bingham, R. and Gargate, L. and Silva, L.O. and Fonseca, R.A. (2008) The interaction of a flowing plasma with a dipole magnetic field: measurements and modelling of a diamagnetic cavity relevant to spacecraft protection. Plasma Physics and Controlled Fusion, 50 (12). p. 124025. ISSN 0741-3335 (http://dx.doi.org/10.1088/0741-3335/50/12/124025)
Full text not available in this repository.Request a copyAbstract
Here we describe a new experiment to test the shielding concept of a dipole-like magnetic field and plasma, surrounding a spacecraft forming a 'mini magnetosphere'. Initial laboratory experiments have been conducted to determine the effectiveness of a magnetized plasma barrier to be able to expel an impacting, low beta, supersonic flowing energetic plasma representing the solar wind. Optical and Langmuir probe data of the plasma density, the plasma flow velocity and the intensity of the dipole field clearly show the creation of a narrow transport barrier region and diamagnetic cavity virtually devoid of energetic plasma particles. This demonstrates the potential viability of being able to create a small 'hole' in a solar wind plasma, of the order of the ion Larmor orbit width, in which an inhabited spacecraft could reside in relative safety. The experimental results have been quantitatively compared with a 3D particle-in-cell 'hybrid' code simulation that uses kinetic ions and fluid electrons, showing good qualitative agreement and excellent quantitative agreement. Together the results demonstrate the pivotal role of particle kinetics in determining generic plasma transport barriers.
ORCID iDs
Bamford, R., Gibson, K.J., Thornton, A.J., Bradford, J., Bingham, R. ORCID: https://orcid.org/0000-0002-9843-7635, Gargate, L., Silva, L.O. and Fonseca, R.A.;-
-
Item type: Article ID code: 19427 Dates: DateEventDecember 2008PublishedNotes: Strathprints' policy is to record up to 8 authors per publication, plus any additional authors based at the University of Strathclyde. More authors may be listed on the official publication than appear in the Strathprints' record. Subjects: Science > Physics > Plasma physics. Ionized gases Department: Faculty of Science > Physics Depositing user: Strathprints Administrator Date deposited: 20 May 2010 13:26 Last modified: 04 Jan 2025 12:59 URI: https://strathprints.strath.ac.uk/id/eprint/19427