Picture of UK Houses of Parliament

Leading national thinking on politics, government & public policy through Open Access research

Strathprints makes available scholarly Open Access content by researchers in the School of Government & Public Policy, based within the Faculty of Humanities & Social Sciences.

Research here is 1st in Scotland for research intensity and spans a wide range of domains. The Department of Politics demonstrates expertise in understanding parties, elections and public opinion, with additional emphases on political economy, institutions and international relations. This international angle is reflected in the European Policies Research Centre (EPRC) which conducts comparative research on public policy. Meanwhile, the Centre for Energy Policy provides independent expertise on energy, working across multidisciplinary groups to shape policy for a low carbon economy.

Explore the Open Access research of the School of Government & Public Policy. Or explore all of Strathclyde's Open Access research...

Bacteriophage therapy - cooked goose or Phoenix rising?

Mattey, M. and Spencer, J. (2008) Bacteriophage therapy - cooked goose or Phoenix rising? Current Opinion in Biotechnology, 19 (6). pp. 608-612. ISSN 0958-1669

[img] Microsoft Word
Phage_therapyjsfinaldraft_1_.doc
Preprint

Download (71kB)

    Abstract

    Recent animal and human trials of bacteriophage therapy have demonstrated its potential to alleviate bacterial diseases, both in internal and in external applications. The regulatory requirements are becoming clearer as more examples are presented. A core of GLP (Good Laboratory Practice) studies will be needed to validate safety and clinical trials to validate efficacy. GMP (Good Manufacturing Practice) production requirements and quality issues will mean that comparable costs to the production of conventional antibiotics should be anticipated. The definition of the 'active substance' will be central to the success of bacteriophage therapy to ensure that the variety and evolutionary potential of bacteriophages are exploited.