Picture of boy being examining by doctor at a tuberculosis sanatorium

Understanding our future through Open Access research about our past...

Strathprints makes available scholarly Open Access content by researchers in the Centre for the Social History of Health & Healthcare (CSHHH), based within the School of Humanities, and considered Scotland's leading centre for the history of health and medicine.

Research at CSHHH explores the modern world since 1800 in locations as diverse as the UK, Asia, Africa, North America, and Europe. Areas of specialism include contraception and sexuality; family health and medical services; occupational health and medicine; disability; the history of psychiatry; conflict and warfare; and, drugs, pharmaceuticals and intoxicants.

Explore the Open Access research of the Centre for the Social History of Health and Healthcare. Or explore all of Strathclyde's Open Access research...

Image: Heart of England NHS Foundation Trust. Wellcome Collection - CC-BY.

Three-dimensional channel modelling using spherical statistics for multiple-input multiple-output systems

Mammasis, K. and Stewart, R.W. and Pfann, E. and Freeland, G. (2009) Three-dimensional channel modelling using spherical statistics for multiple-input multiple-output systems. IET Communications, 3 (1). pp. 48-56. ISSN 1751-8628

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Recently, the third generation partnership standards bodies (3GPP/3GPP2) have defined a two-dimensional channel model for multiple-input multiple-output (MIMO) systems, where the propagating plane waves are assumed to arrive only from the azimuthal direction and therefore not include the elevation domain. As a result of this assumption, the derived angle-of-arrival (AoA) distribution is characterised only by the azimuth direction of these waves. The AoA distribution of multipaths is implemented with a novel three-dimensional approach. The von Mises- Fisher (VMF) probability density function is used to describe their distribution within the propagation environment in both azimuth and co-latitude. More specifically, the proposed model uses a mixture of VMF distributions. A mixture can be composed of any number of clusters and this is clutter specific. The parameters of the individual cluster of scatterers within the mixture are derived and an estimation of those parameters is achieved using the spherical K-means algorithm and also the expectation maximisation algorithm. Statistical tests are provided to measure the goodness of fit of the proposed model. The results indicate that the proposed model fits well with MIMO experimental data obtained from a measurement campaign in Germany.