Picture of rolled up £5 note

Open Access research that shapes economic thinking...

Strathprints makes available scholarly Open Access content by the Fraser of Allander Institute (FAI), a leading independent economic research unit focused on the Scottish economy and based within the Department of Economics. The FAI focuses on research exploring economics and its role within sustainable growth policy, fiscal analysis, energy and climate change, labour market trends, inclusive growth and wellbeing.

The open content by FAI made available by Strathprints also includes an archive of over 40 years of papers and commentaries published in the Fraser of Allander Economic Commentary, formerly known as the Quarterly Economic Commentary. Founded in 1975, "the Commentary" is the leading publication on the Scottish economy and offers authoritative and independent analysis of the key issues of the day.

Explore Open Access research by FAI or the Department of Economics - or read papers from the Commentary archive [1975-2006] and [2007-2018]. Or explore all of Strathclyde's Open Access research...

Relativistic modulational instability of electron-acoustic waves in an electron-pair ion plasma

Misra, A.P. and Shukla, P.K. (2008) Relativistic modulational instability of electron-acoustic waves in an electron-pair ion plasma. Physics of Plasmas, 15 (12). pp. 122107-1. ISSN 1070-664X

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

The modulational instability of finite amplitude electron-acoustic waves (EAWs) along the external magnetic field is studied in an electron-pair ion plasma. Accounting for the relativistic electron mass variation nonlinearity and the Boltzmann distribution of both positive and negative ions, new regimes for the relativistic modulational instability (MI) for the low frequency (below the electron gyrofrequency) short-wavelength (in comparison with the ion gyroradius) modes are obtained numerically. It is found that the presence of a significant fraction of negative ions suppresses the MI growth/decay rate for the modulated EAW packets. The results could be of important for understanding the origin of amplitude modulated EAW packets in space (e.g., Earth's magnetotail) as well as in laboratory plasmas.