Picture water droplets

Developing mathematical theories of the physical world: Open Access research on fluid dynamics from Strathclyde

Strathprints makes available Open Access scholarly outputs by Strathclyde's Department of Mathematics & Statistics, where continuum mechanics and industrial mathematics is a specialism. Such research seeks to understand fluid dynamics, among many other related areas such as liquid crystals and droplet evaporation.

The Department of Mathematics & Statistics also demonstrates expertise in population modelling & epidemiology, stochastic analysis, applied analysis and scientific computing. Access world leading mathematical and statistical Open Access research!

Explore all Strathclyde Open Access research...

Spatio-temporal stochastic modelling of clostridium difficile

Starr, J.M. and Campbell, A. and Renshaw, E. and Poxton, I.R. and Gibson, G.J. (2009) Spatio-temporal stochastic modelling of clostridium difficile. Journal of Hospital Infection, 71 (1). pp. 49-56. ISSN 0195-6701

Full text not available in this repository. Request a copy from the Strathclyde author


Clostridium difficile-associated diarrhoea (CDAD) occurs sporadically or in small discrete outbreaks. Stochastic models may help to inform hospital infection control strategies. Bayesian framework using data augmentation and Markov chain Monte Carlo methods were applied to a spatio-temporal model of CDAD. Model simulations were validated against 17 months of observed data from two 30-bedded medical wards for the elderly. Simulating the halving of transmission rates of C. difficile from other patients and the environment reduced CDAD cases by 15%. Doubling the rate at which patients become susceptible increased predicted CDAD incidence by 63%. By contrast, doubling environmental load made hardly any difference, increasing CDAD incidence by only 3%. Simulation of different interventions indicates that for the same effect size, reducing patient susceptibility to infection is more effective in reducing the number of CDAD cases than lowering transmission rates.