Picture of boy being examining by doctor at a tuberculosis sanatorium

Understanding our future through Open Access research about our past...

Strathprints makes available scholarly Open Access content by researchers in the Centre for the Social History of Health & Healthcare (CSHHH), based within the School of Humanities, and considered Scotland's leading centre for the history of health and medicine.

Research at CSHHH explores the modern world since 1800 in locations as diverse as the UK, Asia, Africa, North America, and Europe. Areas of specialism include contraception and sexuality; family health and medical services; occupational health and medicine; disability; the history of psychiatry; conflict and warfare; and, drugs, pharmaceuticals and intoxicants.

Explore the Open Access research of the Centre for the Social History of Health and Healthcare. Or explore all of Strathclyde's Open Access research...

Image: Heart of England NHS Foundation Trust. Wellcome Collection - CC-BY.

Control of the spatial emission structure of broad-area vertical-cavity surface-emitting lasers by feedback

Schulz-Ruhtenberg, M. and Tanguy, Y. and Huang, K.F. and Jager, R. and Ackemann, T. (2009) Control of the spatial emission structure of broad-area vertical-cavity surface-emitting lasers by feedback. Journal of Physics D: Applied Physics, 42 (5). ISSN 0022-3727

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

The wave number of transverse spatial structures in broad-area vertical-cavity surface-emitting lasers (VCSELs) is controlled via frequency-selective feedback from an external self-imaging cavity in a broad range of wave numbers and emission frequencies. The selected states follow the dispersion curves of the free-running laser. A control range of about 2.5 µm−1 in spatial frequency space and 2.5 nm in emission wavelength was obtained for square VCSELs and of about 3 µm−1 and 8 nm for circular VCSELs having a different dispersion curve. By spatial filtering in Fourier space, the shape of the structures can also be controlled to some extent. It is argued that the feedback techniques are useful to 'probe' emission states of the free-running laser.