An adaptive multi-scale computational modelling of Clare College Bridge
Mihai, L.A. and Ainsworth, M. (2009) An adaptive multi-scale computational modelling of Clare College Bridge. Computer Methods in Applied Mechanics end Engineering, 198 (21-26). pp. 1839-1847. ISSN 0045-7825 (http://dx.doi.org/10.1016/j.cma.2008.12.030)
Full text not available in this repository.Request a copyAbstract
Masonry structures may be modelled as an assembly of linearly elastic bodies (individual bricks or stone-blocks) in unilateral frictional contact. Such models generally constitute a formidable computational challenge owing to the need to resolve interactions between individual bodies, such as detection of crack and openings and the resolution of non-linear equations governing the contact. Even for medium size structures, the large number of blocks from which they are assembled renders a full direct simulation of such structures practically impossible. In this paper, an adaptive multi-scale technique for the modelling of large-scale dynamic structures is implemented and applied to the computer simulation of Clare College Bridge, in Cambridge, UK. The adaptive multi-scale approach enables us to carry out simulations at a complexity normally associated with the cost of modelling the entire structure by a simple continuum model whilst incorporating small scale effects, such as openings of gaps and slippage between individual masonry units, using a systematic and locally optimal criterion.
-
-
Item type: Article ID code: 19155 Dates: DateEvent1 May 2009PublishedSubjects: Science > Mathematics > Probabilities. Mathematical statistics Department: Faculty of Science > Mathematics and Statistics Depositing user: Strathprints Administrator Date deposited: 21 May 2010 15:21 Last modified: 03 Jan 2025 14:29 URI: https://strathprints.strath.ac.uk/id/eprint/19155