Picture offshore wind farm

Open Access research that is improving renewable energy technology...

Strathprints makes available scholarly Open Access content by researchers across the departments of Mechanical & Aerospace Engineering (MAE), Electronic & Electrical Engineering (EEE), and Naval Architecture, Ocean & Marine Engineering (NAOME), all of which are leading research into aspects of wind energy, the control of wind turbines and wind farms.

Researchers at EEE are examining the dynamic analysis of turbines, their modelling and simulation, control system design and their optimisation, along with resource assessment and condition monitoring issues. The Energy Systems Research Unit (ESRU) within MAE is producing research to achieve significant levels of energy efficiency using new and renewable energy systems. Meanwhile, researchers at NAOME are supporting the development of offshore wind, wave and tidal-current energy to assist in the provision of diverse energy sources and economic growth in the renewable energy sector.

Explore Open Access research by EEE, MAE and NAOME on renewable energy technologies. Or explore all of Strathclyde's Open Access research...

Dynamics of nonlinearly interacting magnetic electron drift vortex modes in a nonuniform plasma

Eliasson, Bengt and Shukla, P.K. and Pavlenko, V.P. (2009) Dynamics of nonlinearly interacting magnetic electron drift vortex modes in a nonuniform plasma. Physics of Plasmas, 16 (4). 042306-1. ISSN 1070-664X

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

A simulation study of dynamical evolution of nonlinearly interacting two-dimensional magnetic electron drift vortex (MEDV) modes in a nonuniform plasma is presented. Depending on the equilibrium density and temperature gradients, the system can either be stable or unstable. The unstable system reveals spontaneous generation of magnetic fields from noise level, and large-scale magnetic field structures are formed. When the system is linearly stable, one encounters MEDV mode turbulence in which there is a competition between zonons (zonal flows) and streamers. For large MEDV mode amplitudes, one encounters the formation of localized and small-scale magnetic vortices and vortex pairs with scale sizes of the order of the electron skin depth. The MEDV turbulence exhibits nonuniversal (non-Kolmogorov-type) spectra for different sets of plasma parameters. The relevance of this work to laboratory and cosmic plasmas is briefly mentioned.