Picture of automobile manufacturing plant

Driving innovations in manufacturing: Open Access research from DMEM

Strathprints makes available Open Access scholarly outputs by Strathclyde's Department of Design, Manufacture & Engineering Management (DMEM).

Centred on the vision of 'Delivering Total Engineering', DMEM is a centre for excellence in the processes, systems and technologies needed to support and enable engineering from concept to remanufacture. From user-centred design to sustainable design, from manufacturing operations to remanufacturing, from advanced materials research to systems engineering.

Explore Open Access research by DMEM...

Nanoparticle encapsulation improves oral bioavailability of curcumin by at least 9-fold when compared to curcumin administered with piperine as absorption enhancer

Shaikh, J. and Ankola, D.D. and Beniwal, V. and Singh, D. and Kumar, M.N.V. Ravi (2009) Nanoparticle encapsulation improves oral bioavailability of curcumin by at least 9-fold when compared to curcumin administered with piperine as absorption enhancer. European Journal of Pharmaceutical Sciences, 37 (3-4). pp. 223-230. ISSN 0928-0987

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Curcumin, a derived product from common spice turmeric that is safe and beneficial in several aliments was formulated into biodegradable nanoparticles with a view to improve its oral bioavailability. The curcumin encapsulated nanoparticles prepared by emulsion technique were spherical in shape with particle size of 264 rim (polydispersity index 0.31) and 76.9% entrapment at 15% loading. The curcumin encapsulated nanoparticles were able to withstand the International Conference on Harmonisation (ICH) accelerated stability test conditions for refrigerated products for the studied duration of 3 months. X-ray diffraction analysis revealed the amorphous nature of the encapsulated curcumin. The in vitro release was predominantly by diffusion phenomenon and followed Higuchi's release pattern. The in vivo pharmacokinetics revealed that curcumin entrapped nanoparticles demonstrate at least 9-fold increase in oral bioavailability when compared to curcumin administered with piperine as absorption enhancer. Together the results clearly indicate the promise of nanoparticles for oral delivery of poorly bioavailable molecules like curcumin.