Picture of neon light reading 'Open'

Discover open research at Strathprints as part of International Open Access Week!

23-29 October 2017 is International Open Access Week. The Strathprints institutional repository is a digital archive of Open Access research outputs, all produced by University of Strathclyde researchers.

Explore recent world leading Open Access research content this Open Access Week from across Strathclyde's many research active faculties: Engineering, Science, Humanities, Arts & Social Sciences and Strathclyde Business School.

Explore all Strathclyde Open Access research outputs...

Averaging semiempirical NMR chemical shifts: dynamic effects on the subpicosecond time scale

Tuttle, T. (2009) Averaging semiempirical NMR chemical shifts: dynamic effects on the subpicosecond time scale. Journal of Physical Chemistry A, 113 (43). pp. 11723-11733. ISSN 1089-5639

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

The variation of the 1H and 13C NMR chemical shifts of heptapeptide ATWLPPR was investigated during a hybrid quantum mechanical (QM)/molecular mechanical (MM = CHARMM) molecular dynamics simulation of the peptide in aqueous solvent. The semiempirical method OM3 was used as the QM method, and the effect of augmenting the OM3 Hamiltonian with an empirical dispersion term (OM3-D) was also explored. The semiempirical MNDO method was used to calculate the chemical shifts of snapshots taken at 50 fs intervals during the 100 ps simulation. The calculated chemical shifts are highly sensitive to fluctuations of the molecular geometry on the time scale of molecular vibrations. However, the time-averaged chemical shift over the full simulation results in reasonable agreement with the experimental NMR chemical shifts and more consistent results compared with the averaged chemical shifts obtained from gas-phase optimized conformations of the peptide. The OM3 and OM3-D methods are stable and reproduce the main features of the experimental geometry during the 100 ps simulation.