Picture of boy being examining by doctor at a tuberculosis sanatorium

Understanding our future through Open Access research about our past...

Strathprints makes available scholarly Open Access content by researchers in the Centre for the Social History of Health & Healthcare (CSHHH), based within the School of Humanities, and considered Scotland's leading centre for the history of health and medicine.

Research at CSHHH explores the modern world since 1800 in locations as diverse as the UK, Asia, Africa, North America, and Europe. Areas of specialism include contraception and sexuality; family health and medical services; occupational health and medicine; disability; the history of psychiatry; conflict and warfare; and, drugs, pharmaceuticals and intoxicants.

Explore the Open Access research of the Centre for the Social History of Health and Healthcare. Or explore all of Strathclyde's Open Access research...

Image: Heart of England NHS Foundation Trust. Wellcome Collection - CC-BY.

Computer aided modelling of an interdigitated microelectrode array impedance biosensor for the detection of bacteria

Webster, M.S. and Timoshkin, I. and MacGregor, S.J. and Mattey, M. (2009) Computer aided modelling of an interdigitated microelectrode array impedance biosensor for the detection of bacteria. IEEE Transactions on Dielectrics and Electrical Insulation, 16 (5). pp. 1356-1363. ISSN 1070-9878

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Electrostatic finite element modelling software and an ac equivalent circuit model have been used to investigate an impediometric microelectrode array biosensor for the detection of bacteria. The electrostatic model showed the capacitance of the biosensor to decrease with increasing numbers of bacteria trapped on the sensor's surface in a suspension of relatively high dielectric permittivity. Optimization of the model suggests that reducing the spatial wavelength of the biosensor's electrodes either through a decrease in electrode width or gap will improve the sensor's sensitivity. In addition, the model confirmed that the permittivity of the external medium had a significant effect on detection efficiency. Increased sensitivity in suspensions of lower relative dielectric permittivity was observed. The equivalent circuit model (ECM) was used to analyze the effect of high levels of immobilized bacteria at fixed signal frequencies (100 Hz and 1 MHz). It has been shown that the ECM discussed in this paper is able to successfully model the experimental data for the actual sensor in the low frequency ranges, allowing prediction of the sensor response and analysis of its performance. Overall, the modelling results obtained in the present paper are in general agreement with those from other published data and can be used in the development and optimization of impediometric biosensors for rapid and reliable detection of pathogenic bacteria.