Picture map of Europe with pins indicating European capital cities

Open Access research with a European policy impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the European Policies Research Centre (EPRC).

EPRC is a leading institute in Europe for comparative research on public policy, with a particular focus on regional development policies. Spanning 30 European countries, EPRC research programmes have a strong emphasis on applied research and knowledge exchange, including the provision of policy advice to EU institutions and national and sub-national government authorities throughout Europe.

Explore research outputs by the European Policies Research Centre...

A comparative assessment of different deviation strategies for dangerous NEO

Colombo, Camilla and S. Cuartielles, Joan-Pau and Vasile, Massimiliano and Radice, Gianmarco (2006) A comparative assessment of different deviation strategies for dangerous NEO. In: AIAA 57th International Astronautical Congress, 2006-10-02 - 2006-10-06.

[img]
Preview
Text (strathprints018844)
strathprints018844.pdf - Accepted Author Manuscript

Download (898kB) | Preview

Abstract

In this paper a number of deviation strategies for dangerous Near Earth Objects (NEO) have been compared. For each strategy (i.e. Solar Collector, Nuclear Blast, Kinetic Impactor, Low-thrust Propulsion, Mass Driver) a multi criteria optimisation method has been used to reconstruct the set of Pareto optimal solutions minimising the mass of the spacecraft and the warning time, and maximising the deviation. Then, a dominance criterion has been defined and used to compare all the Pareto sets. The achievable deviation at the MOID, either for a low-thrust or for an impulsive variation of the orbit of the NEO, has been computed through a set of analytical formulas. The variation of the orbit of the NEO has been estimated through a deviation action model that takes into account the wet mass of the spacecraft at the Earth. Finally the technology readiness level of each strategy has been used to compute a more realistic value for the required warning time.