Picture of DNA strand

Pioneering chemical biology & medicinal chemistry through Open Access research...

Strathprints makes available scholarly Open Access content by researchers in the Department of Pure & Applied Chemistry, based within the Faculty of Science.

Research here spans a wide range of topics from analytical chemistry to materials science, and from biological chemistry to theoretical chemistry. The specific work in chemical biology and medicinal chemistry, as an example, encompasses pioneering techniques in synthesis, bioinformatics, nucleic acid chemistry, amino acid chemistry, heterocyclic chemistry, biophysical chemistry and NMR spectroscopy.

Explore the Open Access research of the Department of Pure & Applied Chemistry. Or explore all of Strathclyde's Open Access research...

Low-thrust trajectories design for the European Student Moon Orbiter mission

Colombo, Camilla and Novak, Daniel and Heiligers, Jeannette (2007) Low-thrust trajectories design for the European Student Moon Orbiter mission. In: 58th International Astronautical Congress, 2007-09-24 - 2007-09-28.

[img]
Preview
Text (strathprints018841)
strathprints018841.pdf
Accepted Author Manuscript

Download (1MB) | Preview

Abstract

The following paper presents the mission analysis studies performed for the phase A of the solar electric propulsion option of the European Student Moon Orbiter (ESMO) mission. ESMO is scheduled to be launched in 2011, as an auxiliary payload on board of Ariane 5. Hence the launch date will be imposed by the primary payload. A method to efficiently assess wide launch windows for the Earth-Moon transfer is presented here. Sets of spirals starting from the GTO were propagated forward with a continuous tangential thrust until reaching an apogee of 280,000 km. Concurrently, sets of potential Moon spirals were propagated backwards from the lunar orbit injection. The method consists of ranking all the admissible lunar spiral-down orbits that arrive to the target orbit with a simple tangential thrust profile after a capture through the L1 Lagrange point. The 'best' lunar spiral is selected for each Earth spiral. Finally,comparing the value of the ranking function for each launch date, the favourable and unfavourable launch windows are identified.