Picture child's feet next to pens, pencils and paper

Open Access research that is helping to improve educational outcomes for children

Strathprints makes available scholarly Open Access content by researchers in the School of Education, including those researching educational and social practices in curricular subjects. Research in this area seeks to understand the complex influences that increase curricula capacity and engagement by studying how curriculum practices relate to cultural, intellectual and social practices in and out of schools and nurseries.

Research at the School of Education also spans a number of other areas, including inclusive pedagogy, philosophy of education, health and wellbeing within health-related aspects of education (e.g. physical education and sport pedagogy, autism and technology, counselling education, and pedagogies for mental and emotional health), languages education, and other areas.

Explore Open Access education research. Or explore all of Strathclyde's Open Access research...

Tendon rehabilitation: isolated eccentric loading invokes a greater reduction in Achilles tendon thickness than concentric loading

Grigg, N.P. and Smeathers, J.E. and Wearing, S.C. and Urry, S.R. (2009) Tendon rehabilitation: isolated eccentric loading invokes a greater reduction in Achilles tendon thickness than concentric loading. Journal of Science and Medicine in Sport, 12 (Suppl.). S20. ISSN 1878-1861

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Eccentric calf muscle exercise has been advocated as the treatment of choice in Achilles tendinopathy. However, mechanisms underlying the efficacy of eccentric, as opposed to concentric, exercise remain unknown. This research investigated the acute change in the sagittal thickness of the Achilles tendon (AT) in response to bouts of isolated eccentric or concentric calf muscle exercise. Eleven healthy males, without AT pathology (age, 25.9 ± 4.9 years; mass, 74.2 ± 11.8 kg), completed an exercise protocol involving isolated eccentric loading of the AT (ankle dorsi-flexion), while the contra-lateral AT experienced isolated concentric loading (ankle plantar-flexion). Six sets of 15 repetitions were performed against body weight, with an additional 20% bodyweight added via a backpack. AT thickness 2 cm proximal to the calcaneal insertion was determined from sagittal sonograms taken immediately prior to and following exercise. Consistent with earlier research, calf muscle exercise resulted in an abrupt decrease in AT thickness. However, isolated eccentric loading induced a significantly greater decrease (−20.8 ± 5.5%) than concentric loading (−5.3 ± 4.7%, p = 0.013). It is hypothesised that eccentric muscle action may invoke a differential stress field within the AT that results in a localised increase in collagen strain and extrusion of water from the tendon. Shear stress arising from such fluid flow may, in turn, stimulate tenocytes to produce matrix proteins that promote tendon remodelling, as has been shown in other collagen-rich tissues. The findings of this research have broad implications for the treatment of tendinopathy and provide greater insight into the clinically perceived benefit of eccentric over concentric exercise in AT rehabilitation.