Picture of sea vessel plough through rough maritime conditions

Innovations in marine technology, pioneered through Open Access research...

Strathprints makes available scholarly Open Access content by researchers in the Department of Naval Architecture, Ocean & Marine Engineering based within the Faculty of Engineering.

Research here explores the potential of marine renewables, such as offshore wind, current and wave energy devices to promote the delivery of diverse energy sources. Expertise in offshore hydrodynamics in offshore structures also informs innovations within the oil and gas industries. But as a world-leading centre of marine technology, the Department is recognised as the leading authority in all areas related to maritime safety, such as resilience engineering, collision avoidance and risk-based ship design. Techniques to support sustainability vessel life cycle management is a key research focus.

Explore the Open Access research of the Department of Naval Architecture, Ocean & Marine Engineering. Or explore all of Strathclyde's Open Access research...

Modelling activity dependent diametral strain in Achilles tendon

Stevenson, N.J. and Smeathers, J.E. and Grigg, N.P. and Wearing, S.C. (2009) Modelling activity dependent diametral strain in Achilles tendon. Journal of Science and Medicine in Sport, 12. S18-S19. ISSN 1878-1861

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

The Achilles tendon is a viscoelastic tissue that typically experiences 3500 ± 1700 cyclic loads per day from intermittent periods of ambulatory activity. Typically, peak tensile loads exceed three times body weight and average about 1500 N during stance, which lasts for approximately 0.6 s, followed by a 0.2 s unloaded swing phase. Viscoelastic materials respond to external load (stress) in a time-dependent manner commonly referred to as creep deformation (strain) and recover slowly when unloaded. This can be observed in vivo by monitoring changes in tendon diameter using quantitative ultrasonography and is referred to here as diametral strain. Diametral strains between −25% and +10% have been recorded over a 24 h period and are hypothesised to be associated with fluid movement within the tendon that corresponds with the creep and recovery histories. Changes in tendon diameter were taken at five times throughout a 24 h period in 11 subjects. Ambulatory activity was monitored as time stamped cadence periods by a Polar RS800sd module enabling time of day and activity duration to be used as indicators of creep and recovery histories. These archival records of diametral strain versus activity were then used to develop an adaptive non-linear viscoelastic model for interpolating tendon cross-sectional dimensions between observation points and from which, site specific volumetric flow rates can be estimated. This model has an error bound of less than 5% and has the potential for application to future studies linking fluid flow within the tissue to inherent biomechanical properties, injury status or pathological defects.