Picture child's feet next to pens, pencils and paper

Open Access research that is helping to improve educational outcomes for children

Strathprints makes available scholarly Open Access content by researchers in the School of Education, including those researching educational and social practices in curricular subjects. Research in this area seeks to understand the complex influences that increase curricula capacity and engagement by studying how curriculum practices relate to cultural, intellectual and social practices in and out of schools and nurseries.

Research at the School of Education also spans a number of other areas, including inclusive pedagogy, philosophy of education, health and wellbeing within health-related aspects of education (e.g. physical education and sport pedagogy, autism and technology, counselling education, and pedagogies for mental and emotional health), languages education, and other areas.

Explore Open Access education research. Or explore all of Strathclyde's Open Access research...

Secondary coking and cracking of shale oil vapors from pyrolysis or hydropyrolysis of a Kentucky Cleveland oil-shale in a 2-stage reactor

Carter, S.D. and Citiroglu, M. and Gallacher, J.G. and Snape, Colin and Mitchell, S. and Lafferty, C.J. (1994) Secondary coking and cracking of shale oil vapors from pyrolysis or hydropyrolysis of a Kentucky Cleveland oil-shale in a 2-stage reactor. Fuel, 73 (9). pp. 1455-1458. ISSN 0016-2361

Full text not available in this repository. Request a copy from the Strathclyde author


It is widely recognized that secondary reactions which are mainly associated with minerals during oil shale retorting have a marked influence on the product yields and compositions. To understand these phenomena more clearly, the secondary reactions of shale oil vapours from the pyrolysis (or hydropyrolysis) of Kentucky Cleveland oil shale were examined in a two-stage, fixed-bed reactor in flowing nitrogen or hydrogen at pressures of 0.1-15 MPa. The vapours from pyrolysis (first stage) were passed through a second stage containing combusted shale, upgrading catalyst or neither. Carbon conversion to volatile products in the first stage increased from 49% during thermal pyrolysis to 81% at 15 MPa H2 partial pressure. During thermal pyrolysis, total pressure had only a slight effect on carbon removal from the raw shale and subsequent deposition on to the porous solids in the second stage. Carbon deposition on to the combusted shale in the second stage was reduced to zero at 15 MPa H2 partial pressure. The n-alkane distributions of the oils as determined by gas chromatography clearly demonstrated that higher hydrogen pressure, contact with combusted shale, or both contributed to lower-molecular-weight products.