Picture offshore wind farm

Open Access research that is improving renewable energy technology...

Strathprints makes available scholarly Open Access content by researchers across the departments of Mechanical & Aerospace Engineering (MAE), Electronic & Electrical Engineering (EEE), and Naval Architecture, Ocean & Marine Engineering (NAOME), all of which are leading research into aspects of wind energy, the control of wind turbines and wind farms.

Researchers at EEE are examining the dynamic analysis of turbines, their modelling and simulation, control system design and their optimisation, along with resource assessment and condition monitoring issues. The Energy Systems Research Unit (ESRU) within MAE is producing research to achieve significant levels of energy efficiency using new and renewable energy systems. Meanwhile, researchers at NAOME are supporting the development of offshore wind, wave and tidal-current energy to assist in the provision of diverse energy sources and economic growth in the renewable energy sector.

Explore Open Access research by EEE, MAE and NAOME on renewable energy technologies. Or explore all of Strathclyde's Open Access research...

Secondary coking and cracking of shale oil vapors from pyrolysis or hydropyrolysis of a Kentucky Cleveland oil-shale in a 2-stage reactor

Carter, S.D. and Citiroglu, M. and Gallacher, J.G. and Snape, Colin and Mitchell, S. and Lafferty, C.J. (1994) Secondary coking and cracking of shale oil vapors from pyrolysis or hydropyrolysis of a Kentucky Cleveland oil-shale in a 2-stage reactor. Fuel, 73 (9). pp. 1455-1458. ISSN 0016-2361

Full text not available in this repository. Request a copy from the Strathclyde author


It is widely recognized that secondary reactions which are mainly associated with minerals during oil shale retorting have a marked influence on the product yields and compositions. To understand these phenomena more clearly, the secondary reactions of shale oil vapours from the pyrolysis (or hydropyrolysis) of Kentucky Cleveland oil shale were examined in a two-stage, fixed-bed reactor in flowing nitrogen or hydrogen at pressures of 0.1-15 MPa. The vapours from pyrolysis (first stage) were passed through a second stage containing combusted shale, upgrading catalyst or neither. Carbon conversion to volatile products in the first stage increased from 49% during thermal pyrolysis to 81% at 15 MPa H2 partial pressure. During thermal pyrolysis, total pressure had only a slight effect on carbon removal from the raw shale and subsequent deposition on to the porous solids in the second stage. Carbon deposition on to the combusted shale in the second stage was reduced to zero at 15 MPa H2 partial pressure. The n-alkane distributions of the oils as determined by gas chromatography clearly demonstrated that higher hydrogen pressure, contact with combusted shale, or both contributed to lower-molecular-weight products.