Picture water droplets

Developing mathematical theories of the physical world: Open Access research on fluid dynamics from Strathclyde

Strathprints makes available Open Access scholarly outputs by Strathclyde's Department of Mathematics & Statistics, where continuum mechanics and industrial mathematics is a specialism. Such research seeks to understand fluid dynamics, among many other related areas such as liquid crystals and droplet evaporation.

The Department of Mathematics & Statistics also demonstrates expertise in population modelling & epidemiology, stochastic analysis, applied analysis and scientific computing. Access world leading mathematical and statistical Open Access research!

Explore all Strathclyde Open Access research...

Evanescent-wave acceleration of femtosecond electron bunches

Zawadzka, J. and Jaroszynski, D.A. and Carey, J.J. and Wynne, K. (2000) Evanescent-wave acceleration of femtosecond electron bunches. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 445 (1-3). pp. 324-328. ISSN 0168-9002

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

A 150-fs 800-nm 1-μJ laser was used to excited surface plasmons in the Kretschmann geometry in a 500-Å silver film. Multiphoton excitation results in the emission of femtosecond electron bunches (40 fC) as had been seen before. The electron beam is highly directional and perpendicular to the prism surface. A time-of-flight setup has been used to measure the kinetic-energy distribution of the photoelectrons. Surprisingly, we find that this distribution extends to energies as high as 40 eV. Theoretical calculations show that these high energies may be due to acceleration in the evanescent laser field that extends from the silver film out into the vacuum. These results suggest that femtosecond pulses with more energy per pulse or longer wavelength may be used to accelerate electrons to the keV or even MeV level.