Laser plasma acceleration of electrons: towards the production of monoenergetic beams

Krushelnick, K. and Najmudin, Z. and Mangles, S.P.D. and Thomas, A.G.R. and Wei, M.S. and Walton, B.R. and Gopal, A. and Viskup, R. and Gallacher, J.G. and Jaroszynski, D.A. (2005) Laser plasma acceleration of electrons: towards the production of monoenergetic beams. Physics of Plasmas, 12 (5). 056711-1-056711-8. ISSN 1070-664X (http://dx.doi.org/10.1063/1.1902951)

Full text not available in this repository.Request a copy

Abstract

The interaction of high intensity laser pulses with underdense plasma is investigated experimentally using a range of laser parameters and energetic electron production mechanisms are compared. It is clear that the physics of these interactions changes significantly depending not only on the interaction intensity but also on the laser pulse length. For high intensity laser interactions in the picosecond pulse duration regime the production of energetic electrons is highly correlated with the production of plasma waves. However as intensities are increased the peak electron acceleration increases beyond that which can be produced from single stage plasma wave acceleration and direct laser acceleration mechanisms must be invoked. If, alternatively, the pulse length is reduced such that it approaches the plasma period of a relativistic electron plasma wave, high power interactions can be shown to enable the generation of quasimonoenergetic beams of relativistic electrons.

ORCID iDs

Krushelnick, K., Najmudin, Z., Mangles, S.P.D., Thomas, A.G.R., Wei, M.S., Walton, B.R., Gopal, A., Viskup, R., Gallacher, J.G. and Jaroszynski, D.A. ORCID logoORCID: https://orcid.org/0000-0002-3006-5492;