Picture of blood cells

Open Access research which pushes advances in bionanotechnology

Strathprints makes available scholarly Open Access content by researchers in the Strathclyde Institute of Pharmacy & Biomedical Sciences (SIPBS) , based within the Faculty of Science.

SIPBS is a major research centre in Scotland focusing on 'new medicines', 'better medicines' and 'better use of medicines'. This includes the exploration of nanoparticles and nanomedicines within the wider research agenda of bionanotechnology, in which the tools of nanotechnology are applied to solve biological problems. At SIPBS multidisciplinary approaches are also pursued to improve bioscience understanding of novel therapeutic targets with the aim of developing therapeutic interventions and the investigation, development and manufacture of drug substances and products.

Explore the Open Access research of SIPBS. Or explore all of Strathclyde's Open Access research...

On the purification of notexin: isolation of a single amino acid variant from the venom of Notechis scutatus scutatus

Chwetzoff, S. and Mollier, P. and Bouet, F. and Rowan, E.G. and Harvey, A.L. and Menez, A. (1990) On the purification of notexin: isolation of a single amino acid variant from the venom of Notechis scutatus scutatus. FEBS Letters, 261 (2). pp. 226-230. ISSN 0014-5793

Full text not available in this repository.Request a copy from the Strathclyde author


Venom of the Australian tiger snake, Notechis scutatus scutatus was fractionated by conventional ion-exchange chromatography. The fraction containing notexin, a well-known single-chain toxic phospholipase A2, was further purified by reverse-phase high-performance liquid chromatography. Two main components were isolated and the major one corresponded to notexin. The other component, designated as notechis Ns, was an isofonn of notexin. Notechis Ns and notexin possessed similar in vitro esterase activity, in vitro neuromuscular activity and in vivo lethality. Amino acid composition and sequence of the Staphylococcus aureus V8-protease peptides demonstrated that primary structures of notechis Ns and notexin differed from each other by a single substitution amongst 119 amino acids: Lys → Arg at position 16.