Influence of physical aging on the molecular motion and structural relaxation in poly(ethylene terephthalate) and related polyesters
McGonigle, E.A. and Daly, J.H. and Jenkins, S.D. and Liggat, J.J. and Pethrick, R.A. (2000) Influence of physical aging on the molecular motion and structural relaxation in poly(ethylene terephthalate) and related polyesters. Macromolecules, 33 (2). pp. 480-489. ISSN 0024-9297 (http://dx.doi.org/10.1021/ma9909197)
Full text not available in this repository.Request a copyAbstract
A combination of dielectric relaxation, dynamic mechanical thermal analysis, and positron annihilation measurements is reported on melt-cast films of poly(ethylene terephthalate), poly(ethylene naphthalate), and their copolymers. The effects of change in the chemical structure of the polyesters are rationalized in terms of increased restriction of the mobility of the polar segments of the chain by the incorporation of the bulky naphthalate structure. All the quenched samples exhibit physical aging when raised to elevated temperatures, the rate depending on the degree of undercooling used in the aging experiments. The free volume surprisingly does not change significantly with temperature and leads to the suggestion that the reduction in the dielectric permittivity is a consequence of a reduction in the mobility of the local segments. The increased storage modulus is also consistent with a reduction in mobility. This proposal is further confirmed by the observation of a good correlation between the rates and extents of the physical aging as detected by dynamic mechanical and dielectric relaxation measurements. Similarities in the activation energies of the β relaxation process for all the polymers investigated indicate that the dipole relaxation processes have a common origin and can be ascribed to motion of the linking polar entity. This study implies that aging is accompanied by an increase in ordering within these polyesters.
ORCID iDs
McGonigle, E.A., Daly, J.H., Jenkins, S.D., Liggat, J.J. ORCID: https://orcid.org/0000-0003-4460-5178 and Pethrick, R.A.;-
-
Item type: Article ID code: 17506 Dates: DateEvent5 January 2000PublishedSubjects: Science > Chemistry Department: Faculty of Science > Pure and Applied Chemistry Depositing user: Strathprints Administrator Date deposited: 22 Apr 2010 08:12 Last modified: 11 Nov 2024 09:16 URI: https://strathprints.strath.ac.uk/id/eprint/17506